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In  IEEE  International  Solid-State  Circuits  Conference  (IS-
SCC)  2023,  CMOS  process  is  still  the  dominating  fabrication
technology  for  image  sensors,  and  three-dimensional  (3D)
wafer-stacked  process  with  Cu–Cu  pixel-level  connection  has
been  adopted  to  achieve  small  pixel  size  and  high  integra-
tion  level.  The  development  of  CMOS  image  sensors  (CIS)  is
still  focusing  on  the  trends  of  high  performance  and  more
functionalities, such as hybrid event-based vision sensor (EVS)
and terahertz (THz)/X-ray image sensor.

 (a) Hybrid event-based vision sensors

EVS can output pixel-level  information if  a  temporal  con-
trast change beyond threshold is  detected, together with the
feature  of  data-compression.  It  enables  high-speed,  low-
latency  and  low-power  operation,  and  is  efficient  for  captur-
ing  motion  information.  The  pixel  of  EVS  usually  comprises
amplifier,  sampler,  comparator,  and  logic  circuitry,  which
leads  to  a  complex  pixel  structure  and  large  pixel  pitch.  For
this  reason,  three-dimensional  wafer-stacked  process  with
Cu–Cu  pixel-level  connection  has  been  used  to  reduce  the
pixel pitch and improve its performance.

In Ref. [1], the hybrid EVS/CIS macro pixels realized in top
wafer are connected to the EVS readout circuit and time-to-di-
gital converter (TDC) on the middle wafer, and the analog-to-
digital converter (ADC), event signal processor (ESP), image sig-
nal  processor  (ISP),  MIPI  interface  on  the  bottom  wafer.  This
sensor  with  15M  CIS  pixels  and  1M  EVS  pixels  reaches  a
readout  speed  of  4.6G  events/s  and  8.8 μm  EVS  pixel  pitch.
Ref.  [2]  also  proposed  an  image  sensor  with  35.6M  CIS  pixels
and  2.08M  EVS  pixels  which  achieves  10K  event  frame  rate
with  4.56G  events/s  by  adaptive  control  method  on  event
sparsity.  Its  EVS  pixel  pitch  is  4.88 μm.  Another  hybrid  EVS
sensor  achieves  1.41G  events/s  with  2.97 μm  pixel  pitch  and
resolution  of  640  ×  640  by  shared  pixel  front-end  circuitry[3].
All  of  those  three  sensors  have  been  realized  with  either
three  or  dual  wafer-stacked  back-illuminated  process.  Com-
pared  with  the  EVS  only  sensor  reported  in  ISSCC  2020,
which  achieved  1.066G  events/s  with  pixel  pitch  of  4.86 μm
and resolution of 1280 × 720[4],  these hybrid EVS sensors out-
put  either  intensity  frames or  event  frames[1−3],  achieve high-
er  EVS  resolution[1, 2] or  smaller  pixel  size[3],  and  improve  the
event readout speed greatly [1−3].

 (b) Terahertz (THz)/X-ray image sensors

The  existing  atmosphere  absorption  notches  in  the  3–

4  THz  frequency  band  provides  promising  applications  ow-
ing to its nondestructive features. In Ref. [5], a 16.4k pixel THz
image  sensor  with  73  dB  dynamic  range  has  been  realized.
This  sensor  adopts  column-parallel  readout  architecture  with
oversampling  and  chopping  to  balance  speed  and  noise.  In
this sensor, a 2T pixel with step-covered patch antenna and de-
fected ground structure have been proposed to achieve a sens-
itivity of 753 V/W at 3.4 THz with a frequency span of 0.78 THz.
Compared  with  the  THz  image  sensor  reported  in  ISSCC
2021,  which  achieved  1024  pixel,  0.46–0.75  THz  frequency
bandwidth and 25 fps,  this  sensor  realized a  wider  frequency
band  in  high  frequency  regime  and  a  higher  resolution  with
much higher frame rate[6].

Hard  X-rays  detector  has  been  widely  used  in  industrial
and  medical  equipment.  X-ray  detector  with  the  features  of
high-frame-rate and high-dynamic-range can be more adapt-
ive  to  motion  objects  with  lower  radiation  dose.  Although
SPAD  detectors  have  been  realized  to  obtain  3D  images[4],
this  year,  a  400  ×  200  resolution  600  fps  117.7  dB  dynamic
range  SPAD  X-ray  detector  with  seamless  global  shutter  and
time-encoded  extrapolation  counter  is  proposed  to  obtain
high-quality X-ray images[7]. In this sensor, the number of con-
trol  signals  is  minimized  and  the  counter  cells  recycle  when
they  overflow,  which  achieves  18-bit  outputs  only  using  10-
bit hardware.

Table 1 compares the different types of  image sensors in
ISSCC  2023.  In  summary,  although  advanced  wafer-stacked
back-illuminated  process  has  been  adopted  in  hybrid  event-
based  vision  sensors  to  improve  the  resolution  and  maxim-
um  event  rate,  the  resolution  of  event-detection  mode,
which  is  much  lower  than  that  of  the  intensity-acquisition
mode,  still  needs  to  be  improved.  For  the  THz/X-ray  image
sensors,  the  resolution  may  be  further  improved  by  ad-
vanced wafer-stacked back-illuminated process in the future.
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Table 1.   Performance comparison of different types image sensor.

Ref. [1] [2] [3] [5] [7]

Sensor type CIS + EVS CIS + EVS CIS + EVS THz CIS X-ray SPAD

Technology 40 nm BSI CIS + 65 nm CMOS +
3DMIM + 40 nm CMOS

90 nm BI CIS +
22 nm CMOS

90 nm BI CIS +
22 nm CMOS

180 nm
CMOS

65 nm CMOS

Resolution (pixel) 1032 × 928(EVS)/
4096 × 3680(CIS)

2.08M(EVS)/
35.6M(CIS)

640 × 640 128 × 128 400 × 200

Pixel pitch (μm) 8.8(EVS)/2.2(CIS) 4.88(EVS)/1.22(CIS) 2.97 60 49.5

Frame rate (fps) 18(CIS) 59(CIS) 60(CIS) 130 600

Dynamic range (dB) – 67.8 72.2 73 117.7

Random noise (e-) 2.2 1.57 2.6 – –

Maximum event rate (Eps) 4.6G 4.56G 1.41G – –
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